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Abstract
: The proliferation of publicly accessible large-scale biologicalBackground

data together with increasing availability of bioinformatics tools have the
potential to transform biomedical research. Here we report a crowdsourcing
Jamboree that explored whether a team of volunteer biologists without formal
bioinformatics training could use OMiCC, a crowdsourcing web platform that
facilitates the reuse and (meta-) analysis of public gene expression data, to
compile and annotate gene expression data, and design comparisons between
disease and control sample groups.

 The Jamboree focused on several common human autoimmuneMethods:
diseases, including systemic lupus erythematosus (SLE), multiple sclerosis
(MS), type I diabetes (DM1), and rheumatoid arthritis (RA), and the
corresponding mouse models. Meta-analyses were performed in OMiCC using
comparisons constructed by the participants to identify 1) gene expression
signatures for each disease (disease versus healthy controls at the gene
expression and biological pathway levels), 2) conserved signatures across all
diseases within each species (pan-disease signatures), and 3) conserved
signatures between species for each disease and across all diseases
(cross-species signatures).

 A large number of differentially expressed genes were identified forResults:
each disease based on meta-analysis, with observed overlap among diseases
both within and across species. Gene set/pathway enrichment of upregulated
genes suggested conserved signatures (e.g., interferon) across all human and
mouse conditions.

 Our Jamboree exercise provides evidence that when enabled byConclusions:
appropriate tools, a "crowd" of biologists can work together to accelerate the
pace by which the increasingly large amounts of public data can be reused and

meta-analyzed for generating and testing hypotheses. Our encouraging
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meta-analyzed for generating and testing hypotheses. Our encouraging
experience suggests that a similar crowdsourcing approach can be used to
explore other biological questions.
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Introduction
The volume of large-scale biological data in the public domain 
is increasing at an unprecedented rate; as a result, data reuse 
is becoming an increasingly viable means to generate and test 
hypotheses1 (Figure 1). The reusability of public data, however, 
depends on the quality and availability of the associated meta-
data and annotations. Given a research goal, for example, to gen-
erate gene expression signatures for a biological phenotype, one 
has to first identify and annotate relevant public data, followed 
by the construction of comparison group pairs (or CGP - see  
Figure 1 - e.g., a group of samples corresponding to the pheno-
type of interest versus a group of control samples) and subsequent 
bioinformatics analyses. Bench scientists are uniquely empowered 
with biological knowledge to identify and annotate relevant pub-
lic data and form proper comparisons. Recently, there have also 
been a variety of crowdsourcing efforts, including hackathons, 
datathons and open challenges, in which diverse groups of indi-
viduals work together to accelerate the pace of pursuing common  
goals2,3. Thus, we were interested in assessing what could be 
accomplished by harnessing the collective biological knowledge of 
a group of biologists to explore, identify, and annotate public datasets 

when empowered with a user-friendly web platform and a shared 
scientific goal; would this approach accelerate the pace by which 
useful biological comparison groups could be constructed and 
utilized? What would be the specific strengths and hurdles, from  
both a social and scientific perspective? Towards addressing these 
questions, we conducted a crowdsourcing “Jamboree” exercise 
within the NIH immunological community to test the hypothesis  
that the use of OMiCC4 (https://omicc.niaid.nih.gov), an open,  
programming-free web platform that enables a crowdsourc-
ing approach to public gene expression data reuse, can facili-
tate the rapid assembly of a large data compendium followed by  
bioinformatics analyses to generate biological hypotheses. Select 
aspects of this exercise, particularly on how it provides evi-
dence that a tool such as OMiCC can enable biologists without  
bioinformatics training to directly explore public data, have 
been highlighted elsewhere5 and for which this work serves as a  
companion (also see supplemental website to ref. 5 - https://omicc.
niaid.nih.gov/2016-nih-jamboree-analysis/report.html); here we 
focus on the post-Jamboree data quality control, analysis, and 
observations, as well as discussing the utility and caveats of this 
approach.

Figure 1. New research paradigm incorporating exploration and reuse of public data. Increasing availability of public data opens new 
opportunities for biologists to generate hypotheses. The NIH OMiCC Jamboree was a social experiment to assess whether a group of 
biologists without computational experience can identify and annotate public datasets and construct CGPs using the OMiCC tool. This paper 
describes the data analysis, including meta-analysis and gene set enrichment analysis, to derive gene expression signatures across human 
and mouse.
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For this crowdsourcing experiment, we focused on assessing the 
gene expression patterns of and shared signatures among several 
common human autoimmune and inflammatory diseases and the 
corresponding mouse models. Mouse models of human diseases 
can be informative for studying disease mechanisms, but may not 
accurately reflect the underlying biology in humans6,7. We were par-
ticularly interested in determining whether we could detect shared 
gene expression signatures among diseases (pan-disease signatures), 
including type I diabetes (DM1), multiple sclerosis (MS), rheuma-
toid arthritis (RA), sarcoidosis (sarcoid), Sjögren’s syndrome (SS), 
and systemic lupus erythematosus (SLE), as well as among their 
mouse models. We chose these diseases because they have reason-
ably well-established mouse models and both human and mouse 
gene expression data are available publicly. A prior study has also 
evaluated pan-disease transcriptional signatures and found con-
served signals across RA, SLE and SS8. Here we are including more 
diseases and are additionally interested in assessing whether human 
and mouse have shared pan-disease signatures. Given that data from 
mouse are often generated from non-blood tissues while those from 
humans usually come from blood, such cross-species comparisons 
could also point to potential links between blood and non-blood 
tissues. Cross-species comparisons of gene expression signatures 
have been performed previously in sepsis, for example, where both 
conserved and divergent signals have been detected6,9,10. While our 
analyses are motivated by these questions, our primary goal here 
is not to validate previous findings or to generate new biological 
knowledge per se, but to use this exercise as a proof-of-concept to 
illustrate the potential utility of data reuse with crowdsourcing.

Methods
Crowdsourcing: team composition and responsibilities
The Jamboree was advertised on the NIH Immunology Listserv, 
which is primarily subscribed by local researchers to disseminate 
and share immunology-focused information. No inclusion or exclu-
sion criteria were applied to the identification of the participants. 
The Jamboree involved a half-day group training session using the 
OMiCC platform followed by a day-long Jamboree, during which 
29 volunteer biologists were separated into ten 2- or 3-member teams 
to search OMiCC for public gene expression datasets of DM1, 
MS, RA, sarcoid, and SLE (Figure 2). The assignments of teams 
and topics were based on the participants’ self-declared research 
backgrounds; additionally, each group had at least one participant 
who felt proficient using OMiCC after the half-day orientation. 
Half of the groups were assigned to focus on humans with one 
group per disease and similarly, the other half of the groups were 
assigned to the corresponding mouse models. The participants  
were asked to use OMiCC (https://omicc.niaid.nih.gov) to anno-
tate sample groups and create CGPs between disease and control 
samples in the studies they identified. They were also encour-
aged to consult the primary publications describing the studies to 
help ensure the accuracy of their annotations. Although Sjögren’s  
syndrome was not originally assigned to any group, the sarcoido-
sis groups were not able to find sufficient studies from which to 
construct CGPs and thus was subsequently assigned to focus on 
Sjögren’s syndrome. Compendia of CGPs created by the teams 
can be accessed and reused within OMiCC (see Data and Software 
Availability).

Figure 2. NIH OMiCC Jamboree workflow/timeline. Workflow of the NIH Jamboree detailing steps taken prior to, during, and after the actual 
Jamboree event.
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Data curation and quality control (QC) for downstream 
analyses
A total of 86 human CGPs were collected from the Jamboree, 
spreading across the six diseases. Participants were instructed to 
identify public microarray datasets in OMiCC that contained data 
derived from whole blood (WB) or peripheral blood mononuclear 
cells (PBMCs) of both healthy controls and affected patients; they 
were asked to avoid studies of stimulated cells. Post-Jamboree 
CGP QC was required in order to correct misplaced annotations 
or to standardize annotations created with free text. Only 54 of the 
86 CGPs were created with samples annotated as PBMC or WB. 
We removed an additional 15 CGPs for the following reasons: 1) 
incorrect sample annotations; 2) the CGP did not contain sample 
groups from both cases and controls; and 3) the samples in the CGP 
significantly overlapped with those in another CGP (Jaccard index  
> 66%). As a result, 39 human CGPs representing five diseases 
(note that no WB or PBMC samples passed QC for Sjögren’s syn-
drome) were included in the downstream analyses (Table 1).

Participants of the mouse teams created a total of 94 CGPs from 
mouse models of the aforementioned six diseases. Participants 
were instructed to identify public microarray datasets in OMiCC 
that contained data derived from non-blood tissues, WB, or PBMCs 
of both healthy and diseased mice; they were asked to avoid stud-
ies of stimulated cells. Due to the complexities of the mouse mod-
els and studies, the overall quality of the CGPs was comparatively 
lower than that of the human CGPs. For example, a substantial 
fraction of CGPs contained data from stimulated cells despite our 
explicit call for avoiding such studies; these CGPs were excluded. 

Four CGPs were excluded because they were duplicates of other 
CGPs. Some CGPs had young, clinically unaffected mice as con-
trols and older, clinically ill mice as cases (e.g., age-related disease 
progression models), while others were obtained from purified cell 
subsets (e.g., CD4+ T cells and B cells). We still included these 
CGPs in our final set with the goal of identifying conserved sig-
nals through meta-analysis. After this curation process, 34 CGPs 
remained across four diseases because no samples from sarcoidosis 
or Sjögren’s syndrome passed QC (Table 1).

In addition to the individual disease datasets (i.e., a collection of 
CGPs), all the CGPs for each species were combined to create a 
pan-disease compendium—one for human and one for mouse.

Meta-analysis
Meta-analysis was conducted in OMiCC to derive differential 
expression signatures for each dataset (note that OMiCC uses a 
rank-based meta-analysis R package called RankProd11, version 
2.36.0). The results were reported at the gene level, based on internal 
OMiCC mappings between platform-specific probe identifiers and 
standard HUGO gene names. For each gene, this method reports the 
false prediction rate (PFP - similar to false discovery rate (FDR)) 
for both increased and decreased expression (herein referred to as 
the UP and DOWN genes, or differentially expressed (DE) genes 
when they are combined). Using PFP <= 0.05 as a threshold, we 
identified UP and DOWN genes for each disease (meta-analysis per  
species) and for each species (meta-analysis across all CGPs within 
a species to derive pan-disease gene signatures). Genes with conflict-
ing indications (which is possible with the RankProd method used 

Table 1. Overview of datasets generated in the Jamboree. Each dataset is 
comprised of a set of comparison group pairs (CGPs), which in turn contain a 
number of case and control microarray samples. Since the same sample may 
be selected in more than one CGP, the number of unique samples in each group 
is listed. Common genes are those measured across all platforms in a dataset. 
These genes were considered in the ranked-based meta-analyses, some of 
which were identified as having significantly (PFP <= 0.05) increased (UP) or 
decreased (DOWN) expression. Genes in both UP and DOWN lists were removed. 
The datasets ‘human_pan-disease’ and ‘mouse_pan-disease’ were created by 
combining all CGPs constructed for each species.

Dataset CGPs Unique 
Cases

Unique 
Controls

Common 
Genes

UP 
Genes

DOWN 
Genes

human_dm1 3 168 146 10681 762 766

human_ms 9 171 99 7909 971 1106

human_pan-disease 39 1101 795 7808 1021 976

human_ra 15 335 188 11254 1316 1550

human_sarcoid 4 141 160 16012 2513 2381

human_sle 8 286 202 10689 1183 500

mouse_dm1 13 62 26 5753 739 670

mouse_ms 4 17 14 7009 326 403

mouse_pan-disease 34 141 84 5644 849 682

mouse_ra 9 32 20 12801 1123 662

mouse_sle 8 30 24 13040 626 524
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by OMiCC), i.e. those suggested to have increased and decreased 
expression for the same disease, were removed. The resulting gene 
lists and meta-analysis output were exported as text files for further 
processing. Prior to any downstream analyses, mouse genes were 
mapped to human genes using NCBI’s homology maps (ftp://ftp.
ncbi.nlm.nih.gov/pub/homology_maps/human/,version 12/27/15) 
and those with either no or non-unique mappings were discarded. 
The robustness of the RankProd (rank based) results was evalu-
ated using another effect-size metric called Cohen’s d, which was  
calculated in R as

,
2

D C D C

D C D C

n n n n
d t

n n n n

  + +
  =

+ −  

where t is the t statistic reported by OMiCC, and n
D
 and n

C
 are the 

number of samples in the disease and control groups, respectively.

Gene set enrichment analysis
Gene set based enrichment (or over-representation) analyses were 
carried out separately for the UP and DOWN genes from each of 
the four diseases in human and mouse (i.e., DM1, MS, RA, and 
SLE) against terms in KEGG (http://www.genome.jp/kegg/) or  
Reactome (http://www.reactome.org/) containing 3 to 500 genes, 
using the R clusterProfiler12 (version 3.0.5) and ReactomePA13 
(version 1.16.2) packages, respectively. In addition, to illustrate 
how similar analyses can be performed without any program-
ming, enrichment analyses were also carried out using the web-
based Toppgene tool14 (https://toppgene.cchmc.org/enrichment.jsp;  
using default settings and discarding any input gene that mapped to 
multiple entries). Pan-disease signatures were generated by meta-
analyzing each of the two pan-disease compendia (one for human 
and one for mouse)—a pan-disease compendium contains the  
CGPs from all diseases within a species. The method implemented 
by the above software determines enrichment by evaluating the sta-
tistical significance of the overlap between the input DE gene list 
and target gene sets using the hypergeometric test, and we consid-
ered gene sets and pathways with an adjusted p-value of <=0.05 to 
be significantly enriched. Conserved signatures between human and 
mouse were determined simply by finding the gene sets and path-
ways that were significantly enriched in both human and mouse.

Ethics
This work did not require ethics approval, as per NIH guidelines.

Results

Dataset 1. R data file

http://dx.doi.org/10.5256/f1000research.10465.d146994

Contains: 1) detailed information about the CGPs included in our 
analyses; 2) gene-by-compendium matrices of PFP values (can 
be interpreted as FDR) outputted by OMiCC (one matrix for UP 
genes; another for DOWN genes)—starting with this data matrix 
the user can elect to use any PFP cutoff to define DE genes (note 
that we have one compendium per disease per species, and a 
pan-disease compendium per species); and 3) gene-set over-
representation analysis results generated in R.

Dataset 2. R markdown script to generate the data analysis 
report

http://dx.doi.org/10.5256/f1000research.10465.d146995

The script can be used with Dataset 1 as the data source to 
generate the main data figures and associated descriptions.

Dataset 3. Meta-analysis output files exported from OMiCC

http://dx.doi.org/10.5256/f1000research.10465.d146996

Dataset 4. Results of Toppgene analyses against KEGG, 
Reactome, and Gene Ontology (GO) Biological Process terms 
using the DE genes listed in Table S1 as input

http://dx.doi.org/10.5256/f1000research.10465.d146997

Disease gene signatures
Using the 39 human and 34 mouse CGPs created by the Jambo-
ree participants (after QC), for each disease we ran meta-analysis  
across the CGPs in each disease within OMiCC. The number of 
DE genes varies substantially across diseases, possibly driven in 
part by differences in sample sizes and in the number of common 
genes shared among profiling platforms in each disease/CGP col-
lection (Table 1 and Figure 3A; a list of DE genes for each disease 
is in Table S1). Comparison of the DE gene sets among diseases, 
separately for UP and DOWN genes, reveals strong signature over-
laps among some diseases. Figures 3B–C show the odds ratios 
(OR) between pairs of diseases and those with OR > 1 have higher 
than the expected number of overlapping genes. Interestingly, there 
tended to be stronger overlap between pairs of diseases within a  
species than that between the same disease across human and 
mouse.

Effect size comparison
Given that meta-analysis results can be method dependent15, we next 
assessed the robustness of the rank-based meta-analysis method 
used by OMiCC by an independent analysis using a standardized 
effect-size metric known as Cohen’s d, which is the mean differ-
ence of expression values between the case and control groups nor-
malized by the joint standard deviation. For each CGP, we ranked 
the genes according to their Cohen’s d value. Then for each collec-
tion of CGPs by which an OMiCC meta-analysis was performed 
(e.g., RA in humans), we calculated the median rank of each gene  
among the CGPs. The genes with large effect sizes according to 
Cohen’s d should be enriched for those identified as having increased 
expression by the rank-based method in OMiCC, and conversely 
for the decreased expression genes. The comparison indicates  
that for most diseases, the OMiCC rank-based results are largely 
consistent with the effect-size approach, although there were  
a number of genes discordant between the two methods  
(Figure S1).
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Figure 3. Comparison of differentially expressed genes across diseases in human and mouse. (A) Number of differentially expressed 
genes and (B–C) the proportion of genes that overlap (i.e. Jaccard index) between UP and DOWN genes (PFP <= 0.05) for pairs of diseases, 
as indicated by the size and color intensity of the circles. The number in each cell denotes the odds ratio, which is a measure of statistical 
association between the two groups based on the degree of gene overlap. An odds ratio of 1 suggests no association. Hs = human; Mm = 
Mouse.

Enriched biological processes/pathways
To gain higher level insights (e.g., pathway and biological proc-
esses) into the gene signatures identified, we assessed whether the 
UP and DOWN genes identified in the previous steps (Figure S2  
and Table S2) are enriched for gene sets and pathways anno-
tated in KEGG and Reactome. The analyses were conducted in  
R (version 3.3.1) and also with Toppgene (a web_based tool). Note 
that the differences between the R and Toppgene analyses can 
be partially explained by the fact that Toppgene assumes that all 
genes in the genome have been measured (i.e., the “background” 
set), which is not true in this analysis because we only assessed 

genes common among gene-expression profiling platforms used to  
generate the data in the compendium (Table 1).

To generate pan-disease signatures, we next attempted to extract 
common enriched pathways across all diseases within each species. 
One simple approach is to identify overlapping signatures from 
the significantly enriched pathways of individual diseases, but its 
statistical power could be limited. Indeed, using this strategy the 
only globally enriched pathway is the Reactome term “Chemokine  
receptors bind chemokines” from the UP genes of the mouse  
datasets. Thus, we also tested an alternative approach where all 

Page 7 of 16

F1000Research 2016, 5:2884 Last updated: 18 APR 2017



Figure 4. Pan-disease enrichment signatures. Over-representation analyses of the (A) UP genes and (B) DOWN genes (PFP <= 0.05) 
identified by using all CGPs from each species in the meta-analysis. The analyses were performed in both R and ToppGene; the top 20 
enriched terms identified in R are shown. Terms found also in ToppGene are indicated by an asterisk (*). P-values are adjusted by Benjamini 
and Hochberg (BH) FDR correction (shown as ‘adj.p’). Counts (indicated by circle size) and gene ratios (x-axis) respectively denote the 
number and proportion of genes in the UP or DOWN signature that also appear in the target gene set.

CGPs from each species across diseases were pooled together 
to form a single OMiCC compendium for meta-analysis (i.e., 
“human_pan-disease” and “mouse_pan-disease”; Figure 4). In 
this manner, the large number of samples increased the statistical 
power of the meta-analysis, thus resulting in the larger number of 
pan-disease enrichment signatures, including those reflecting broad 
immune activation and the well-appreciated interferon signature 
in human8 (Figure 4). However, this approach can potentially be  
confounded by variation in sample sizes across diseases, e.g., dis-
eases with larger numbers of samples may dominate the signal.

Conserved signatures between human and mouse
We next used a conservative approach to assess shared gene  
set/pathway signatures between human and mouse by requiring that 
enriched terms be statistically significant in both human and mouse 
(after multiple-testing correction). Interestingly, using this criterion, 
all pan-disease enrichments conserved between human and mouse 
were derived from the UP genes (Figure 5), which may partially 
reflect that increases in immune cell frequencies (e.g., increases 
in monocytes in blood and/or tissues) were potential underlying  
drivers of these species-conserved, pan-disease signatures.
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Figure 5. Pan-species, pan-disease signatures: Overlap of enriched biological processes between human and mouse. Over-
representation analyses of the (A) UP genes and (B) DOWN genes (PFP <= 0.05) identified within OMiCC were carried out against KEGG 
and Reactome terms (see also Figures 4 and Figure S2 and Table S2). For each individual CGP compendium (disease or pan-disease), gene 
sets or terms with adjusted p-value <= 0.05, as defined by the hypergeometric test after adjustment by the Benjamini and Hochberg (BH) 
FDR procedure, in both human and mouse are listed. These overlapping terms highlight signatures conserved between human and mouse. 
Gene ratios (x-axis) denote the fraction of genes in the respective signature (human and mouse as denote by blue and red, respectively) that 
are in the target gene set (y-axis).
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Discussion
Our crowdsourcing exercise illustrates that a group of biolo-
gists without formal bioinformatics training can use OMiCC, a  
programming-free web-based platform, to generate a sizable number 
of CGPs during a day-long group exercise with a shared scientific 
goal. This is encouraging because CGP construction can be time 
consuming, requires biological expertise, and is often required for 
public data reuse and meta-analysis. Our observation suggests that 
other groups should be able to replicate our experience in their own 
institutions to pursue other scientific questions. However, there are 
some caveats: substantial QC was required to remove improperly 
constructed CGPs, such as those created from data obtained using 
stimulated cells (which was an exclusion criteria we specified, but 
nonetheless, compliance was less than perfect). Additionally, CGPs 
were more difficult to construct for the biologically more complex 
mouse models, and thus more were removed in the QC process. It 
is likely that early participant feedback on CGP quality during the 
Jamboree would help ensure higher quality CGPs, thereby reducing 
some of the required post-Jamboree QC. This also suggests that 
extending the Jamboree to two days, for example, with another day 
to review and QC the CGPs by the participants, could be valuable.

Following QC, meta-analysis performed within OMiCC led to sev-
eral interesting observations: firstly, evaluation of DE genes showed 
substantial signature overlaps among diseases within species, and 
to a lesser extent, between the two species. Secondly, these findings 
were largely consistent when evaluated using an effect-size based 
approach. However, caution needs to be exercised in interpret-
ing the results as the identification of DE genes can be influenced 
by a number of variables that cannot be controlled in this type of  
analysis. For example, as more CGPs from independent studies 
using different platforms are included in the analysis, the number 
of common genes among the platforms typically decreases, thus 
reducing the number of genes for which differential expression 
can be evaluated. Meta-analysis of CGPs containing overlapping 
samples can also give a false sense of robustness because the true 
PFP (or FDR) can be higher than what is reported. Other potential 
confounding factors include unequal distributions of age and race 
(or strain for mice) between sample groups within CGPs. However, 
these can also increase the heterogeneity across CGPs, so any con-
served signals that emerge from the meta-analyses of the CGPs are 
likely relatively robust16. Barring differences in meta-analysis meth-
odologies, our analysis identified a larger number of pan-disease DE 
genes in human compared to an earlier, similar meta-analysis effort8 
(1021 versus 210 UP and 976 versus 202 DOWN genes), likely in 
part because our analysis included a larger number of CGPs/studies 
curated by the Jamboree participants. This highlights the potential 
benefit of using crowdsourcing to amass a large multi-study dataset 
within a relative short amount of time.

Using tools outside of OMiCC, gene set/pathway enrichment 
analysis revealed that, as expected, a higher level of conservation 
across diseases than that at the gene level. Some of the enriched 
KEGG and Reactome terms were consistent with previous reports, 
e.g., “cytokine signaling” was enriched in genes with increased 
expression in human SLE. It is well-established that SLE patients 
exhibit increased expression of IFN-inducible genes in blood 
compared to healthy controls17,18. The term “cytokine signaling” 

was also enriched (albeit to a lesser magnitude) in RA, as well 
as in the human and mouse pan-disease signatures, and it was  
furthermore conserved between human and mouse; these results are 
again consistent with previous reports8,19–21. Our pathway enrichment 
analysis also identified some less well-established, but potentially 
biologically interesting associations. For example, the KEGG term 
“Malaria” is enriched in the UP genes in RA due to genes such as 
CR1, GYPA, ICAM1, PECAM1, and TLR4. It is not clear whether 
this is related to the fact that anti-malarial drugs, such as hydrox-
ychloroquine, have been used as a secondary treatment for RA  
for many years22, and it has been suggested that  
hydroxychloroquine interferes with Toll-like receptor signaling23 
to reduce immune cell activation and proliferation, although its 
exact mechanism of action in ameliorating RA is still not well  
understood. Another potentially interesting observation is the 
enrichment of platelet-related pathways in a number of signa-
tures. The involvement of platelets has been implicated in various  
autoimmune diseases24, particularly in RA25, and has been pro-
posed as a potential therapeutic target for some of the autoimmune  
diseases assessed here26.

In reflection, there are several ways in which our Jamboree could 
have been improved, such as offering more extensive training  
using OMiCC prior to data exploration, providing early feed-
back on the construction of CGPs, and creating independent dis-
covery and validation cohorts to strengthen the robustness of our  
preliminary observations. Despite some of the caveats  
associated with our analyses and results, overall we provided  
evidence that user-friendly crowdsourcing and analysis  
platforms, such as OMiCC, can potentially accelerate the pace  
by which public data can be utilized to generate and test  
hypotheses.

Data and software availability
Gene expression and sample group data 
The comparison group pairs (CGPs, e.g., RA versus healthy) cre-
ated by the Jamboree participants and used in the post-Jamboree 
analyses have been made public in OMiCC at: https://omicc.niaid.
nih.gov/. They are collected in compendia whose names have the 
format 2016-NIH-Jamboree-Species-Disease (species can either be 
Human or Mouse while diseases include DM1, MS, RA, SLE, and 
Sarcoid). These compendia can be retrieved in OMiCC by using 
the compendia search function (on OMiCC homepage: Search > 
On Compendia) and searching for the keyword ‘2016-NIH-Jam-
boree’. This information can also be retrieved from Dataset 1 listed  
below.

To retrieve the raw microarray data, a user can construct new com-
pendia using selected CGPs from the Jamboree compendia col-
lection (see the Community and Sharing Features section of the 
OMiCC Tutorial) and export the gene expression data from the web 
site.

Meta-analyses and gene enrichment analyses data
F1000Research: Dataset 1. R data file, 10.5256/f1000research. 
10465.d14699427 

F1000Research: Dataset 2. R markdown script to generate the data 
analysis report, 10.5256/f1000research.10465.d14699528 
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F1000Research: Dataset 3. Meta-analysis output files exported 
from OMiCC, 10.5256/f1000research.10465.d14699629 

F1000Research: Dataset 4. Results of Toppgene analyses against 
KEGG, Reactome, and Gene Ontology (GO) Biological Process 
terms using the DE genes listed in Table S1 as input, 10.5256/
f1000research.10465.d14699730 

Author contributions
WWL helped design the Jamboree, performed post-Jamboree data 
curation, designed and performed post-Jamboree data analysis, and 
wrote the manuscript; RS designed and organized the Jamboree, 
performed post-Jamboree data curation, and wrote the manuscript; 
OJWG participated in the Jamboree; JST conceived and guided the 
project, designed and helped organize the Jamboree, helped design 

post-Jamboree data analysis plan, helped post-Jamboree data cura-
tion, and wrote the manuscript.

Competing interests
No competing interests were disclosed.

Grant information
This research was funded by the Intramural Programs of the 
National Institute of Allergy and Infectious Diseases (NIAID) 
and the Center for Information Technology (CIT) at the National  
Institutes of Health.

Acknowledgements
We thank BCBB/OCICB of NIAID for providing comput-
ing support and web hosting; NIH Facilities for providing the  
OMiCC Jamboree hosting venue; and members of the J.S.T. lab for 
discussions.

Consortium/Collective Authors
The OMiCC Jamboree Working Group
(Listed alphabetically by last name)

James Austin1, Neha Bansal1, Julián Candia2, Ehren Dancy1, Karen L. Elkins3, Sara Faghihi-Kashani4, Julio Gomez-Rodriguez5, Liliana 
Guedez6, Yongjian Guo1, Maria J. Gutierrez7, Trung Ho8, Reiko Horai6, Sunmee Huh9, Chie Iwamura10, Jaimy Joy11, Ju-Gyeong Kang12, 
Sunil Kaul9, Laura B. Lewandowski13, Candace Liu1, Yong Lu1, Nathan P. Manes1, Mary J. Mattapallil6, Sarfraz Memon9, M. Jubayer  
Rahman10, Kameron B. Rodrigues10, Bruno Silva11, Amit Singh11, Anthony J. St. Leger6, Jessica Tang12, Abigail Thorpe1, Hang Xie3, Yongge 
Zhao9, Ofer Zimmerman1

1.	 National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH), Bethesda, MD, USA, 20892

2.	 Trans-NIH Center for Human Immunology, NIH

3.	 Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA, 20993

4.	 National Institute of Environmental Health Sciences, NIH

5.	 National Human Genome Research Institute, NIH

6.	 National Eye Institute, NIH

7.	 Johns Hopkins University School of Medicine, Baltimore, MD, USA, 21287

8.	 Uniformed Services University of Health Sciences, Bethesda, MD, USA, 20814

9.	 National Cancer Institute, NIH

10.	 National Institute of Diabetes and Digestive and Kidney Diseases, NIH

11.	 National Institute on Aging, NIH

12.	 National Heart, Lung and Blood Institute, NIH

13.	 National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH

Page 11 of 16

F1000Research 2016, 5:2884 Last updated: 18 APR 2017

http://dx.doi.org/10.5256/f1000research.10465.d146996
http://dx.doi.org/10.5256/f1000research.10465.d146997
http://dx.doi.org/10.5256/f1000research.10465.d146997


References

Supplementary material
Figure S1. Meta-analysis results are largely consistent between the rank-based and effect-size-based meta-analysis methods. 
For each dataset, bar-code plots are used to illustrate the positions of the (A) UP and (B) DOWN genes identified by the rank-based meta-
analysis method in the gene list sorted by the median rank (across CGPs) of the effect size indicated by the Cohen’s d statistic in each CGP. 
The gene lists are sorted in ascending order with higher statistics indicating larger effect sizes. The red and blue areas represent genes with 
positive and negative median Cohen’s d values, respectively.

Click here to access the data.

Figure S2. Top 20 enriched biological processes for individual diseases. 
Over-representation analyses of the (A) UP genes and (B) DOWN genes (PFP <= 0.05) identified by a rank-based meta-analysis method 
(RankProd within OMiCC) were carried out for each disease individually from human and mouse against KEGG and Reactome terms. The 
analyses were performed in both R and ToppGene; the top 20 enriched terms identified in R are shown. Terms found also in ToppGene are 
indicated by an asterisk (*). P-values are adjusted by Benjamini and Hochberg (BH) FDR correction. Counts (indicated by circle size) and 
gene ratios (x-axis) respectively denote the number and proportion of genes in the UP signature that also appear in the target gene set.

Click here to access the data.

Table S1. Differentially expressed genes in each dataset. 
A spreadsheet listing all of the genes identified by RankProd (in OMiCC) to exhibit increased (UP) and decreased (DOWN) expression (PFP 
<= 0.05) in disease versus control comparisons in each of the datasets.

Click here to access the data.

Table S2. Enriched pathways for the differentially expressed genes in each dataset. 
A spreadsheet listing all of the enriched KEGG and Reactome terms (p.adj <= 0.05; adjusted by Benjamini and Hochberg correction) 
derived from UP and DOWN genes identified in each dataset. Terms also found by ToppGene analysis are indicated by an asterisk (*).

Click here to access the data.
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This paper describes a thorough case study using the author's recently published OMiCC web service.
This service provides re-processed expression data and allows the curation and selection of datasets by
disease experts without requiring bioinformatic expertise. Performing gene expression meta-analyses is
challenging and time consuming for precisely the reasons this tool addresses and tools like OMiCC are
therefore a welcome addition to the field.

The paper is clearly written and both design and implementation are in general solid.

A shortcoming of the design is that the curation teams were all assigned different tasks. It would have
been interesting to see the overlap of curations obtained by independent teams.

In addition, I have a few minor comments and optional suggestions regarding the analyses: 
A brief literature review of existing solutions (for example InsilicoDB) appears to be missing in both
this manuscript and the main paper.
 
A challenge of comparing array data from different platforms is that some genes might be captured
with varying quality across platforms. It is unclear what was done to identify problematic probe sets
or genes. Various R packages (e.g. metaArray) for example calculate Integrative Correlation
scores. These scores identify probe sets which behave differently across platforms in terms of
co-expressed genes. 
 
Another challenge is the extensive reuse of specimens and data in public datasets. The authors
write that duplicates were identified and removed. As a completely optional suggestion, we
recently published the doppelgangR package that automates the identification of duplicates.
 
It is unclear if the software can generate more classical meta-analysis visualizations like forest
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The number of different platforms included in the meta-analysis and whether platform was a
significant source of heterogeneity could be made clearer.
 
I probably would have performed the gene set analysis using expression data collapsed to
pathways, for example by GSVA, ssGSEA or related newer methods. These methods turn a
gene-by-sample matrix into a pathway-by-sample matrix; the same gene-centric methods can be
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Lau and colleagues describe an interesting effort of a group of biologists without formal bioinformatics
training to use a programming-free web-based platform to generate a sizable number of comparison
group pairs (CGPs) during a day-long group exercise, using gene expression data from humans and
mouse models. The subsequent gene and gene set enrichment analyses – performed after quality control
of the generated CGPs – yield reasonable results for a number of autoimmune diseases, resulting in

plausible enrichments identified for genes and gene sets associated with inflammation and immune
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plausible enrichments identified for genes and gene sets associated with inflammation and immune
processes.

The described effort is a potentially scalable method for analysis of very large data sets using the
combined manpower of a large number of individuals. To produce pore quantifiable data of this process, it
would however be interesting to compare the results of duplicates (do individual groups working in
isolation on the same question come up with the same or different results. How does the result of such a 1
day Jamboree compare with the results of a single expert working for a month? If you would rerun the
exercise, how different would you expect the results to be?
It might also be interesting to systematically eliminate one dataset at a time to quantitate its influence on
the final result.

One major aspect of the study worth more detailed reporting is the way quality controls are carried out on
the CGPs collected by the crowd. This aspect will become even more important when a large crowd is
used, and more CGPs are collected, and constitutes one of the main pillars of all subsequent analyses.
Therefore, I would suggest that the authors report in more detail their strategies and the conduction of the
quality controls, along also with more details on potential caveats and pitfalls.

Other comments:

Methods

Major comment:
"we considered gene sets and pathways with an adjusted p-value of <=0.05 to be significantly
enriched"
Here it is not clear if p-values were adjusted for multiple testing, e.g. using Benjamini-Hochberg
correction.
 
A more detailed description should be given for the ToppGene analysis

Minor comment:
Toppgene is actually spelled "ToppGene"
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